2,265 research outputs found

    Strain measurement at the knee ligament insertion sites

    Get PDF
    We describe the modification of an existing method of ligament strain measurement at the knee joint in detail. At ten fresh joint specimens we used that technique where strain gauges are attached to the ligamentous insertions and origins. We both improved the preparation of the attachment site and the application of the strain gauges. In a special apparatus the specimens were moved from 0degrees extension to 100degrees flexion while simulating muscle strength and axial force. Testing was performed at the posterior cruciate ligament with both intact and transsected anterior cruciate ligament. In contrast to other existing techniques it does not affect the motion of the joint or the integrity and the function of the ligaments. Unlike the original description of that method we could register a loading behaviour of the posterior cruciate ligament that is similar to those reported in the literature

    Systematic Improvement of Parton Showers with Effective Theory

    Full text link
    We carry out a systematic classification and computation of next-to-leading order kinematic power corrections to the fully differential cross section in the parton shower. To do this we devise a map between ingredients in a parton shower and operators in a traditional effective field theory framework using a chain of soft-collinear effective theories. Our approach overcomes several difficulties including avoiding double counting and distinguishing approximations that are coordinate choices from true power corrections. Branching corrections can be classified as hard-scattering, that occur near the top of the shower, and jet-structure, that can occur at any point inside it. Hard-scattering corrections include matrix elements with additional hard partons, as well as power suppressed contributions to the branching for the leading jet. Jet-structure corrections require simultaneous consideration of potential 1 -> 2 and 1 -> 3 branchings. The interference structure induced by collinear terms with subleading powers remains localized in the shower.Comment: 54 pages, 24 figures, plus a few appendices. v2: included a parameter "eta" to account for energy loss, title improved, journal versio

    Zugkraftmessungen beim knöchernen Segmenttransport – in vivo Untersuchungen am Menschen

    Get PDF
    Bone transport applying the principle of distraction osteogenesis makes it possible to reconstruct long bone defects caused by trauma or resection of bone tumors. The method employing a central cable, developed in Munich, is especially suitable for such applications. The main bone fragments are stabilized by an external fixateur, and bone transport is effected with a single central cable fixed to the tip of the segment, and driven by an external, programmable motor. In 15 patients the tractive forces during the entire bone transport were measured with a strain gauge incorporated within the cable. On the basis of the force profiles characteristics normal bone transport (forces between 150 - 250 N) can be distinguished from a critical transport (forces > 250 N) with the risk of premature consolidation. There is some evidence that at a very high level of force, just before premature consolidation a very effective form of bone transport with good bone neoformation can be achieved. Transport systems employing a central cable allow this special form of distraction osteogenesis, since there is continuous force monitoring, and there is the option of employing the traction force as a control factor in a loop

    Simulation Studies on the Interactions of Electron Beam with Wastewater

    Get PDF
    The manufactured chemical pollutants, like 1,4 dioxane and PFAS (per- and polyfluroralkyl substances), found in the underground water and/or drinking water are challenging to be removed or biodegraded. Energetic electrons are capable of mediating and removing them. This paper utilizes FLUKA code to evaluate the beam-wastewater interaction effects with different energy, space and divergence distributions of the electron beam. With 8 MeV average energy, the electron beam exits from a 0.0127 cm thick titanium window, travels through a 4.3 cm distance air and a second 0.0127 cm thick stainless water container window with 2.43 cm radius, and finally is injected into the water area, where the volume of water is around 75 cubic cm. The distribution parameters of the electron beam are from the GPT (General Particle Tracer) simulations for UITF (Upgraded Injector Test Facility) in Jefferson lab. By varying the distributions, several measurements including the dose (or energy deposition) distribution, electron fluence, photon fluence are scored and compared. Taking the comparisons into consideration, this paper is aiming to find better electron beams for the wastewater irradiation

    Design of a 10 MeV Beamline at the Upgraded Injector Test Facility for e-Beam Irradiation

    Get PDF
    Electron beam irradiation near 10 MeV is suitable for wastewater treatment. The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a CW superconducting linear accelerator capable of providing an electron beam of energy up to 10 MeV and up to 100 µA current. This contribution presents the beam transport simulations for a beamline to be used for the irradiation of wastewater samples at the UITF. The simulations were done using the code General Particle Tracer with the goal of obtaining an 8 MeV electron beam of radius (3-σ) of ~2.4 cm. The achieved energy spread is ~74.5 keV. The space charge effects were investigated when the bunch charge is varied to be up to 1000 times and the results showed that they do not affect the beam quality significantly

    Evaluation of the Mechanical Properties of Germanium-on-Insulator (GeOI) Films by Raman Spectroscopy and Nanoindentation

    Get PDF
    Germanium-on-insulator (GeOI) films fabricated using the Smart Cut™ wafer bonding and film exfoliation technology were investigated for the mechanical properties and induced phase transformations by using nanoindentation and Raman spectroscopy experiments. The hardness and modulus results of the GeOI films are significantly different from the literature published Silicon-on-Insulator and bulk germanium results. The GeOI films are softer and more flexible as compared to bulk Ge hardness and stiffness properties. The Raman spectroscopy of the spherical indents indicates bands of metastable Ge phases @ 220 cm−1, 195 cm−1, and 184 cm−1 wavenumbers. Our results demonstrate that a spherical indenter impacted a wider area of contact and produced GeOI indented surfaces free of cracks and fracture. The spherical indenter tip kept the Ge top layer intact when compared to the Berkovich indenter tip during penetration. In contrast, the Berkovich indenter tip developed excessive fracture that resulted in displacing the Ge top layer sideways and exposed the Si substrate underneath revealing Raman spectra bands of metastable Si phases @ 350 cm−1, 399 cm−1, and 430 cm−1
    • …
    corecore